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The class of granular materials spans a very wide spectrum of typologies
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The behavior of granular materials, at the macro-scale, ranges from 

- strain softening to 

- inherent and loading induced anisotropy, 

- localized strains, fractures, etc.

Moreover, it is strongly affected by interactions at the grain-scale
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Computational demand 

depends upon length scale 

according to this

schematic picture. We 

therefore argue that for many 

problems in engineering

and science, continuum 

description of mechanical 

behavior is sometimes

desirable.
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The challenge is the development of continuum models that

1) represent micro-scale effects of grain interactions,

2) describe mechanical properties at scales amenable to continuum 

description,

3) have far smaller computational needs than that of other grain-

based approaches, such as Discrete Element Method DEM or 

Molecular Dynamics MD (which have their own issues)
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OBJECTIVES

• Study mechanical behavior of materials with granular 

microstructures in presence of damage;

• Investigate effect of damage induced anisotropy;

• Overcome mesh dependency in numerical damage mechanics 

via second gradient;

• Develop, utilizing variational approach, continuum models 

which take into account unique dissipative features of the 

grain-scale mechano-morphology.
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Discrete model

Set of n grains:

𝑋1, 𝑋2, … , 𝑋𝑛 ∈ 𝐸2
𝑛

Placement and displacement:
𝑖 = 1, 𝑛 ,
𝑥𝑖 = 𝜒𝑖 𝑡 , 𝑢𝑖 𝑡 = 𝑥𝑖 − 𝑋𝑖 ,

Continuous model

Continuous body 𝐵:

𝑋 ∈ 𝐵 ⊂ 𝐸2

Placement and displacement:
∀𝑋 ∈ 𝐵,

𝜒 𝑋, 𝑡 , 𝑢 𝑋, 𝑡 = 𝜒 𝑋, 𝑡 − 𝑋,

Identification

The following Piola’s ansatz is assumed:

𝑢 𝑋, 𝑡 |𝑋=𝑋𝑖 = 𝑢𝑖 𝑡 , 𝑖 = 1, 𝑛

𝝌𝟏 𝒕

𝝌𝟐 𝒕

𝝌𝟑 𝒕

𝝌𝒏 𝒕

𝝌 𝑿, 𝒕

Kinematics and constitutive assumptions
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OBJECTIVE DEFORMATION MEASURES

𝑋𝑛 − 𝑋𝑝 = 𝐿ෝ𝒏 ՜
𝜒

𝜒 𝑋𝑛, 𝑡 − 𝜒 𝑋𝑝, 𝑡 ,

An example of objective relative displacement is 

the following:

𝒖𝑛𝑝 = 𝐹𝑇 𝜒 𝑋𝑛, 𝑡 − 𝜒 𝑋𝑝, 𝑡 − 𝑋𝑛 − 𝑋𝑝 , 𝐹 = 𝛻𝜒

𝑋𝑛

𝑋𝑝

𝐿ෝ𝒏

Relative displacement: 𝑛𝑝(𝑡) = 𝜒 𝑋𝑛, 𝑡 − 𝜒 𝑋𝑝, 𝑡 − (𝑋𝑛−𝑋𝑝)

𝑋𝑛

𝑋𝑝=𝜒 𝑋𝑝

𝜒 𝑋𝑛

is not objective. For example a rigid body rotation gives non zero relative displacement and zero strain energy
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OBJECTIVE DEFORMATION MEASURES

We assume small value of the grain-pair distance L with respect to the characteristic size of the 

agglomaerate and therefore the validity of the following Taylor’s expansion:

𝜒 𝑋𝑛, 𝑡 = 𝜒 𝑋𝑝, 𝑡 + 𝛻𝜒 |𝑋𝑝 +
1

2
𝛻2𝜒

| 𝑋𝑝
𝑋𝑛 − 𝑋𝑝 ⋅ 𝑋𝑛 − 𝑋𝑝

By insertion of this expansion into the objective relative displacement we have, in index notation

𝑢𝑖
𝑛𝑝

= 2𝐿𝐺𝑖𝑗 ො𝑛𝑗 +
1

2
𝐿2𝐺𝑖𝑗,ℎ ො𝑛𝑗 ො𝑛ℎ

where the definition of the Green-Saint-Venant strain tensor has been used

𝐺 =
1

2
𝐹𝑇𝐹 − 𝐼

The normal relative displacement:
𝑢𝜂 = 𝒖𝑛𝑝 ⋅ ෝ𝒏

The tangential relative displacement:
𝒖𝜏 = 𝒖𝑛𝑝 − 𝒖𝑛𝑝 ⋅ ෝ𝒏 ෝ𝒏

Kinematics and constitutive assumptions
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OBJECTIVE DEFORMATION MEASURES

Squared normal relative displacement:
𝑢𝜂 = 𝒖𝑛𝑝 ⋅ ෝ𝒏

𝑢𝜂 = 2𝐿𝐺𝑖𝑗 ො𝑛𝑖 ො𝑛𝑗 +
1

2
𝐺𝑖𝑗,ℎ ො𝑛𝑖 ො𝑛𝑗 ො𝑛ℎ

𝑢𝜂
2 = 4𝐿2 ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏𝐺𝑖𝑗 𝐺𝑎𝑏 + 2𝐿3 ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐𝐺𝑖𝑗 𝐺𝑎𝑏,𝑐 +

1

4
𝐿4 ො𝑛𝑖 ො𝑛𝑗 ො𝑛ℎ ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐𝐺𝑖𝑗,ℎ𝐺𝑎𝑏,𝑐

Squared tangential relative displacement:
𝒖𝜏 = 𝒖𝑛𝑝 − 𝒖𝑛𝑝 ⋅ ෝ𝒏 ෝ𝒏
𝒖𝜏

2 = 𝑢𝜏
2 = 𝒖𝑛𝑝 ⋅ 𝒖𝑛𝑝 − 𝒖𝑛𝑝 ⋅ ෝ𝒏 2

𝑢𝜏
2 = 4𝐿2𝐺𝑖𝑗 𝐺𝑎𝑏 𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛𝑏 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏 + 2𝐿3𝐺𝑖𝑗 𝐺𝑎𝑏,𝑐 𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛𝑏 ො𝑛𝑐 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐

+
1

4
𝐿4𝐺𝑖𝑗,ℎ𝐺𝑎𝑚,𝑛 𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛ℎ ො𝑛𝑚 ො𝑛𝑛 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛ℎ ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐
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The elastic energy function for a given couple of grains:

𝑈 =
1

2
𝑘𝜂𝐷𝑢𝜂

2 +
1

2
𝑘𝜏𝐷𝑢𝜏

2



DAMAGES, STIFFNESSES AND STRAIN ENERGY

𝑘𝜂
𝑡 - normal stiffness in tension

𝑘𝜂
𝑐 - normal stiffness in compression

Normal stiffness in compression is higher than in tension (𝑘𝜂
𝑐 ≫ 𝑘𝜂

𝑡 )

𝑘𝜏 - tangential stiffness is reduced with 𝐷𝜏 ∈ 0,1 - tangential damage

are reduced with 𝐷𝜂 ∈ 0,1 - normal damage

Thus, the damaged stiffnesses are

𝑘𝜂𝐷 = 𝑘𝜂 1 − 𝐷𝜂 = 𝑘𝜂
𝑡 1 − 𝐷𝜂 𝐻 𝑢𝜂 + 𝑘𝜂

𝑐 1 − 𝐷𝜂 𝐻 −𝑢𝜂 , 𝑘𝜏𝐷 = 𝑘𝜏 1 − 𝐷𝜏

where the Heaviside function 𝐻 has been used.
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Grain, p
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The elastic energy function for a given couple of grains:

𝑈 =
1

2
𝑘𝜂𝐷𝑢𝜂

2 +
1

2
𝑘𝜏𝐷𝑢𝜏

2
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ELASTIC ENERGY FUNCTION

Total elastic energy is the sum over all the N grain pairs :

𝑈𝑡𝑜𝑡 =

𝑖=1

𝑁
1

2
𝑘𝜂𝐷,𝑖𝑢𝜂,𝑖

2 +
1

2
𝑘𝜏𝐷,𝑖𝑢𝜏,𝑖

2

Continuization is done by use the following homogenization rule



𝑖=1

𝑁

𝑎𝑖 ՜ න
𝑆1
𝑎

where 𝑆1 is the unit circle. Thus, continuum total elastic energy is

𝑈 = න
𝑆1

1

2
𝑘𝜂𝐷𝑢𝜂

2 +
1

2
𝑘𝜏𝐷𝑢𝜏

2 𝑋𝑝

𝐿ෝ𝒏
𝜃

𝑋𝑛

𝑈 = න
𝑆1

1

2
𝑘𝜂 1 − 𝐷𝜂 4𝐿2 ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏𝐺𝑖𝑗𝐺𝑎𝑏 + 2𝐿3 ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐𝐺𝑖𝑗𝐺𝑎𝑏,𝑐

+න
𝑆1

1

2
𝑘𝜂 1 − 𝐷𝜂

1

4
𝐿4 ො𝑛𝑖 ො𝑛𝑗 ො𝑛ℎ ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐𝐺𝑖𝑗,ℎ𝐺𝑎𝑏,𝑐

+න
𝑆1

1

2
𝑘𝜏 1 − 𝐷𝜏 4𝐿2𝐺𝑖𝑗𝐺𝑎𝑏 𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛𝑏 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏 + 2𝐿3𝐺𝑖𝑗𝐺𝑎𝑏,𝑐 𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛𝑏 ො𝑛𝑐 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐

+න
𝑆1

1

2
𝑘𝜏 1 − 𝐷𝜏

1

4
𝐿4𝐺𝑖𝑗,ℎ𝐺𝑎𝑏,𝑐 𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛ℎ ො𝑛𝑏 ො𝑛𝑐 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛ℎ ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐
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ELASTIC ENERGY FUNCTION

ℂ, 𝕄 and 𝔻 are the elasticity tensors of  4th , 5th and 6th rank respectively:

ℂ𝑖𝑗𝑎𝑏 = 4𝐿2න
𝑆1
𝑘𝜂 1 − 𝐷𝜂 ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏

+4𝐿2න
𝑆1

𝑘𝜏 1 − 𝐷𝜏
1

4
𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛𝑏 + 𝛿𝑖𝑏 ො𝑛𝑗 ො𝑛𝑎 + 𝛿𝑗𝑎 ො𝑛𝑖 ො𝑛𝑏 + 𝛿𝑗𝑏 ො𝑛𝑖 ො𝑛𝑎 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏

𝕄𝑖𝑗𝑎𝑏𝑐 = 𝐿3න
𝑆1
𝑘𝜂 1 − 𝐷𝜂 ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐

+𝐿3න
𝑆1

𝑘𝜏 1 − 𝐷𝜏
1

4
𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛𝑏 + 𝛿𝑖𝑏 ො𝑛𝑗 ො𝑛𝑎 + 𝛿𝑗𝑎 ො𝑛𝑖 ො𝑛𝑏 + 𝛿𝑗𝑏 ො𝑛𝑖 ො𝑛𝑎 ො𝑛𝑐 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐

𝔻𝑖𝑗ℎ𝑎𝑏𝑐 =
1

4
𝐿4න

𝑆1
𝑘𝜂 1 − 𝐷𝜂 ො𝑛𝑖 ො𝑛𝑗 ො𝑛ℎ ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐

+
1

4
𝐿4න

𝑆1
𝑘𝜏 1 − 𝐷𝜏

1

4
𝛿𝑖𝑎 ො𝑛𝑗 ො𝑛𝑏 + 𝛿𝑖𝑏 ො𝑛𝑗 ො𝑛𝑎 + 𝛿𝑗𝑎 ො𝑛𝑖 ො𝑛𝑏 + 𝛿𝑗𝑏 ො𝑛𝑖 ො𝑛𝑎 ො𝑛ℎ ො𝑛𝑐 − ො𝑛𝑖 ො𝑛𝑗 ො𝑛ℎ ො𝑛𝑎 ො𝑛𝑏 ො𝑛𝑐

𝑈 =
1

2
ℂ𝑖𝑗𝑎𝑏𝐺𝑖𝑗𝐺𝑎𝑏 +𝕄𝑖𝑗𝑎𝑏𝑐𝐺𝑖𝑗𝐺𝑎𝑏,𝑐 +

1

2
𝔻𝑖𝑗ℎ𝑎𝑏𝑐𝐺𝑖𝑗,ℎ𝐺𝑎𝑏,𝑐

Kinematics and constitutive assumptions



DISSIPATION ENERGY
Dissipation energy is assumed to be additively decomposed:

𝑊 = 𝑊𝜂 +𝑊𝜏

The normal contribution:

𝑊𝜂 =
1

2
𝑘𝜂
𝑐 𝐵𝜂

𝑐 2
𝐻 −𝑢𝜂 −𝐷𝜂 +

2

𝜋
tan

𝜋

2
𝐷𝜂 + 𝑘𝜂

𝑡 𝐵𝜂
𝑡 2

𝐻 𝑢𝜂 2 + (𝐷𝜂 − 1 )(2 − log 1 − 𝐷𝜂 + log 1 − 𝐷𝜂
2

The tangent contribution:

𝑊𝜏 =
1

2
𝑘𝜏 𝐵𝜏 𝑢𝜂

2
2 + (𝐷𝜏 − 1 )(2 − log 1 − 𝐷𝜏 + log 1 − 𝐷𝜏

2

Here 𝐵𝜂
𝑐 , 𝐵𝜂

𝑡 ∈ ℝ+
2 are the characteristic lengths in compression and in tension, respectively.

𝐵𝜏 is the characteristic length for tangent damage dissipation and it is assumed to depend on 𝑢𝜂:

𝐵𝜏 = 𝐵𝜏 𝑢𝜂 =

𝐵𝜏0, 𝑢𝜂 ≥ 0,

𝐵𝜏0 − 𝛼2𝑢𝜂,
1 − 𝛼1
𝛼2

𝐵𝜏0 ≤ 𝑢𝜂 < 0,

𝛼1𝐵𝜏0, 𝑢𝜂 <
1 − 𝛼1
𝛼2

𝐵𝜏0

where 𝛼1 and 𝛼2 are further constitutive parameters. 

Kinematics and constitutive assumptions



ACTION FUNCTIONAL

The external world can exert forces expending power both on the scalar normal and on the vector 

tangent objective relative displacements, so that the external energy functional is
𝑈𝑒𝑥𝑡 = 𝐹𝜂

𝑒𝑥𝑡 𝑢𝜂 + 𝑭𝜏
𝑒𝑥𝑡 ⋅ 𝒖𝜏,

where 𝐹𝜂
𝑒𝑥𝑡 and 𝑭𝜏

𝑒𝑥𝑡 are, respectively, the external scalar normal and vector tangent external forces.

The action functional is defined at the grain-level

ℇ = න
𝑇0

𝑇𝑁

𝑈 +𝑊 −𝑈𝑒𝑥𝑡 ,

where 𝑇0, 𝑇𝑁 are instants of time.
𝑇𝑡 ∈ 𝑇𝑡 𝑡=0,…,𝑁, 𝑇𝑡 ∈ ℝ,𝑁 ∈ ℕ

𝑇0 ≤ 𝑇1 ≤ … ≤ 𝑇𝑁

Variational principle



VARIATIONAL INEQUALITY
Fundamental kinematical quantities:

𝑢𝜂 , 𝒖𝜏, 𝐷𝜂, 𝐷𝜏
Action functional

ℇ = ℇ(𝑢𝜂 , 𝒖𝜏, 𝐷𝜂, 𝐷𝜏)

Variations of kinematical variables:

𝑣 = 𝛿𝑢𝜂, 𝛿𝒖𝜏 ∈ 𝐴𝑉𝑡, 𝛽 = 𝛿𝐷𝜂 , 𝛿𝐷𝜏 ∈ ℝ+2,

where 𝐴𝑉𝑡 is a set of admissible variations which is a subset of kinematically admissible displacements.

The increment at 𝑇𝑡
Δ𝑢𝜂 , Δ𝒖𝜏, Δ𝐷𝜂, Δ𝐷𝜏 t

= 𝑢𝜂 , 𝒖𝜏, 𝐷𝜂, 𝐷𝜏 𝑡
− 𝑢𝜂, 𝒖𝜏, 𝐷𝜂, 𝐷𝜏 𝑡−1

Variation of the action functional:

𝛿ℇ = ℇ 𝑢𝜂 + 𝛿𝑢𝜂 , 𝒖𝜏 + 𝛿𝒖𝜏, 𝐷𝜂 + 𝛿𝐷𝜂 , 𝐷𝜏 + 𝛿𝐷𝜏 − ℇ 𝑢𝜂, 𝒖𝜏, 𝐷𝜂, 𝐷𝜏
𝛿ℇ = ℇ′ 𝑢𝜂 , 𝒖𝜏, 𝐷𝜂, 𝐷𝜏 , (𝛿𝑢𝜂, 𝛿𝒖𝜏, 𝛿𝐷𝜂, 𝛿𝐷𝜏 )

The variational principle is formulated as follows:

ℇ′ 𝑢𝜂 , 𝒖𝜏, 𝐷𝜂 , 𝐷𝜏 , Δ𝑢𝜂 , Δ𝒖𝜏, Δ𝐷𝜂 , Δ𝐷𝜏 ≤ ℇ′ 𝑢𝜂 , 𝒖𝜏, 𝐷𝜂 , 𝐷𝜏 , 𝑣, 𝛽

∀𝑣 = 𝛿𝑢𝜂 , 𝛿𝒖𝜏 ∈ 𝐴𝑉𝑡, ∀𝛽 = 𝛿𝐷𝜂 , 𝛿𝐷𝜏 ∈ ℝ+2

Variational principle



GOVERNING EQUATIONS

Euler-Lagrange equations:

−𝑘𝜂 1 − 𝐷𝜂 𝑢𝜂 − 𝑘𝜏𝐵𝜏
𝜕𝐵𝜏
𝜕𝑢𝜂

න
0

𝐷𝜏

log 1 − 𝑥 2𝑑𝑥 + 𝐹𝜂
𝑒𝑥𝑡 = 0

−𝑘𝜏 1 − 𝐷𝜏 𝒖𝜏 + 𝑭𝜏
𝑒𝑥𝑡 = 0

Karush-Kuhn-Tucker (KKT) conditions:

𝑢𝜂
2 − 𝐵𝜂

𝑡 2
𝐻 𝑢𝜂 log 1 − 𝐷𝜂

2
− 𝐵𝜂

𝑐 2
𝐻 −𝑢𝜂 tan

𝜋

2
𝐷𝜂

2

Δ𝐷𝜂 = 0

𝑢𝜏
2 − 𝐵𝜏

2 log 1 − 𝐷𝜏
2 Δ𝐷𝜏 = 0

For both conditions it is either … = 0 or Δ𝐷𝜂 or 𝜏 = 0.

KKT conditions give us analytical expressions for damage 

𝑢𝜂 > 0 ՜ 𝐷𝜂 = 1 − exp −
𝑢𝜂

𝐵𝜂
𝑡

𝑢𝜂 < 0 ՜ 𝐷𝜂 =
2

𝜋
arctan −

𝑢𝜂

𝐵𝜂
𝑐

𝐷𝜏 = 1 − exp −
|𝒖𝜏|

𝐵𝜏

Variational principle



Schematics of considered boundary 
conditions

NUMERICAL EXPERIMENTS

Two square specimens in 2D, with side 𝑆 = 10 [cm] are subjected to extension, compression and 
shearing tests, the quantity ത𝑢 increasing from 0 to ത𝑢𝑚𝑎𝑥

Schematics of analyzed 
domains

𝐿[𝑚] 𝑘𝜂
𝑐

𝐽

𝑚4 𝑘𝜂
𝑡

𝐽

𝑚4 𝑘𝜏
𝐽

𝑚4
𝐵𝜂
𝑐[𝑚] 𝐵𝜂

𝑡[𝑚] 𝐵𝜏0[𝑚] 𝛼1 𝛼2

0.01 3.5e14 3.5e13 3e13 3e-7 7e-8 5e-8 10 7

Results



RESULTS: HOMOGENEOUS CASE
Extension-compression test:

𝑢1 𝑋1, 𝑋2 = −
ത𝑢

𝑆
𝑋1, 𝑢2 𝑋1, 𝑋2 = 0, ∀ 𝑋1, 𝑋2 ∈ 0, 𝑆 × 0, 𝑆

𝐺 =

ത𝑢

𝑆
−1 +

ത𝑢

2𝑆
0

0 0

՜

𝑢𝜂 = 2ത𝑢𝐿 −1 +
ത𝑢

2𝑆
cos2 𝜃

𝑢𝜏
2 = 2ത𝑢𝐿 −1 +

ത𝑢

2𝑆
cos 𝜃 sin 𝜃

2

Shearing test:

𝑢1 𝑋1, 𝑋2 = 0, 𝑢2 𝑋1, 𝑋2 =
ത𝑢

𝑆
𝑋1, ∀ 𝑋1, 𝑋2 ∈ 0, 𝑆 × 0, 𝑆

𝐺 =
0

ത𝑢

2𝑆
ത𝑢

2𝑆
0

՜
𝑢𝜂 = 2ത𝑢 cos 𝜃 sin 𝜃

𝑢𝜏
2 = ത𝑢2 1 − 4 cos2 𝜃 sin2 𝜃

This allows to calculate damage variables:

𝐷𝜂 =

1 − exp −
𝑢𝜂 𝜃

𝐵𝜂
𝑡 , 𝑢𝜂 𝜃 > 0

2

𝜋
arctan −

𝑢𝜂 𝜃

𝐵𝜂
𝑐 , 𝑢𝜂 𝜃 < 0

, 𝐷𝜏 = 1 − exp −
|𝑢𝜏(𝜃)|

𝐵𝜏

Results



RESULTS: HOMOGENEOUS CASE
Compression Tension Shear

𝐷𝜂

𝐷𝜏

Polar plots of the damage variables 𝐷𝜂 and 𝐷𝜏 for different homogeneous test cases and for increasing 

ത𝑢. Black arrows indicate directions of increasing ത𝑢.

Results



RESULTS: HOMOGENEOUS CASE

Polar plots of the damage variable 𝐷𝜏 for homogeneous compression and shearing tests and for 

increasing ത𝑢, when 𝐵𝜏 = 𝐵𝜏0 = 𝑐𝑜𝑛𝑠𝑡 is considered. Black arrows indicate directions of increasing ത𝑢.

Results



RESULTS: HOMOGENEOUS CASE

Compression test Extension test

Results



RESULTS: HOMOGENEOUS CASE

Shearing test

Results



RESULTS: NUMERICAL ALGORITHM

BOUNDARY CONDITIONS 

PARAMETERISED ON ഥ𝒖

cv
SOLVE by the FINITE ELEMENT 

METHOD 

DISPLACEMENT FIELD

STRAIN FIELD

SOLVE KKT CONDITIONS FOR 

EACH 𝑿 ∈ 𝑩, ෝ𝒏 ∈ 𝑺𝟏
DAMAGE FIELDS FOR 

EACH ෝ𝒏 ∈ 𝑺𝟏

CONVERGENCE ? 

INITIAL ELASTICITY TENSORS

DAMAGE FIELDS FOR 

EACH ෝ𝒏 ∈ 𝑺𝟏

(PREVIOUS STEP)

ELASTICITY TENSORS

MATERIALS

PARAMETERS

INITIAL CONDITIONS

- DISPLACEMENT FIELD FOR EACH 𝑿 ∈ 𝑩
- DAMAGE FIELDS FOR EACH 𝑿 ∈ 𝑩, ෝ𝒏 ∈ 𝑺𝟏

REDUCE INCREMENT OF 

ഥ𝒖

NO

INCREASE ഥ𝒖

NO

YES

cvEND

YES

STORE

CONTINUE ? 

Compression\Shear Extension

50 iterations 16 iterations

Results



RESULTS: DAMAGE IN COMPRESSION

(EXTERNAL BORDER)

Normal damage Tangent damage

Results



RESULTS: DAMAGE IN COMPRESSION

(INTERNAL BORDER)

Normal damage Tangent damage
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RESULTS: DAMAGE IN EXTENSION

(EXTERNAL BORDER)

Normal damage Tangent damage

Results



RESULTS: DAMAGE IN EXTENSION

(INTERNAL BORDER)

Normal damage Tangent damage

Results



RESULTS: DAMAGE IN SHEAR

(EXTERNAL BORDER)

Normal damage Tangent damage

Results



RESULTS: DAMAGE IN SHEAR

(INTERNAL BORDER)

Normal damage Tangent damage

Results



RESULTS: ELASTIC ENERGY IN COMPRESSION

180160140120100806040200

150140120100806040200

𝑁𝑖𝑡𝑒𝑟 = 10 𝑁𝑖𝑡𝑒𝑟 = 20 𝑁𝑖𝑡𝑒𝑟 = 30 𝑁𝑖𝑡𝑒𝑟 = 40 𝑁𝑖𝑡𝑒𝑟 = 50

𝑁𝑖𝑡𝑒𝑟 = 10 𝑁𝑖𝑡𝑒𝑟 = 20 𝑁𝑖𝑡𝑒𝑟 = 30 𝑁𝑖𝑡𝑒𝑟 = 40 𝑁𝑖𝑡𝑒𝑟 = 50

Elastic 
energy

Dissipation 
energy

Results



RESULTS: ELASTIC ENERGY IN EXTENSION

0.40.20 0.6 10.8 1.2

0.40.20 0.6 1.20.8 1.41 1.5

𝑁𝑖𝑡𝑒𝑟 = 3 𝑁𝑖𝑡𝑒𝑟 = 6 𝑁𝑖𝑡𝑒𝑟 = 9 𝑁𝑖𝑡𝑒𝑟 = 13 𝑁𝑖𝑡𝑒𝑟 = 16

𝑁𝑖𝑡𝑒𝑟 = 3 𝑁𝑖𝑡𝑒𝑟 = 6 𝑁𝑖𝑡𝑒𝑟 = 9 𝑁𝑖𝑡𝑒𝑟 = 13 𝑁𝑖𝑡𝑒𝑟 = 16

Elastic 
energy

Dissipation 
energy

Results



RESULTS: ELASTIC ENERGY IN SHEAR

70605040302010

0

3530252015105
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40 45

𝑁𝑖𝑡𝑒𝑟 = 10 𝑁𝑖𝑡𝑒𝑟 = 20 𝑁𝑖𝑡𝑒𝑟 = 30 𝑁𝑖𝑡𝑒𝑟 = 40 𝑁𝑖𝑡𝑒𝑟 = 50

𝑁𝑖𝑡𝑒𝑟 = 10 𝑁𝑖𝑡𝑒𝑟 = 20 𝑁𝑖𝑡𝑒𝑟 = 30 𝑁𝑖𝑡𝑒𝑟 = 40 𝑁𝑖𝑡𝑒𝑟 = 50

Elastic 
energy

Dissipation 
energy

Results



CONCLUSION

• A simple method for the identification of isotropic and anisotropic elastic coefficients 

(ℂ, 𝕄 and 𝔻) for standard and strain grain gradient elastic coefficients all in terms of 
distance L and normal 𝑘𝜂 and tangential 𝑘𝜏 elastic stiffness of grain pairs as well as of 

their distributions with respect to the orientation

• Grain-pairs oriented in different directions experience different loading histories, and 
therefore, different damage evolution for the normal 𝐷𝜂 and the tangent 𝐷𝜏
components leading to damage-induced anisotropic response of the continua. 

• Besides, erstwhile isotropic and non-chiral materials transform into anisotropic materials 
with chirality.

• The same for grain-pairs positions: for non-homogeneous deformations, every material 

point of a continuum evolves in a different way leading to damage-induced non-

homogeneous continua.

• Tension-compression asymmetric behavior of grain-pair are easily modelled both in 

elastic and in damage contexts.

Conclusions and future works



FUTURE WORK

• Generalize the simple quadratic form of 

elastic strain energy at grain level: for 

example with the use of Leonard-Jones-type

potential in order to model elastic hardening.

Conclusions and future works

• Generalize elastic strain energy at grain level with the gradient 

of relative displacement (e.g., with pantographic interactions). 

Other grain-pairs-stiffnesses, that necessarily degrade 

differently, will be considered. This should induce boundary 

layers even larger than L.

-L

U

𝑢𝜂



FUTURE WORK

• Add kinematical descriptors at microscale and induce Cosserat

and/or micromorphic continuum target theories. 

• Generalization of the results to dynamics and to 3D.

• Experimental identification of those newly introduces dissipative 

coefficients

Conclusions and future works



FUTURE WORK

• Extend the proposed model to capture plasticity at the grain 

level. Plasticity induce a change in the stress-free configuration.

Conclusions and future works
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