Clinical and numerical study of a statically determinate lingual mechanism for orthodontic tooth displacement

G. Dot^{1,2}, R. Licha¹, F. Goussard³,

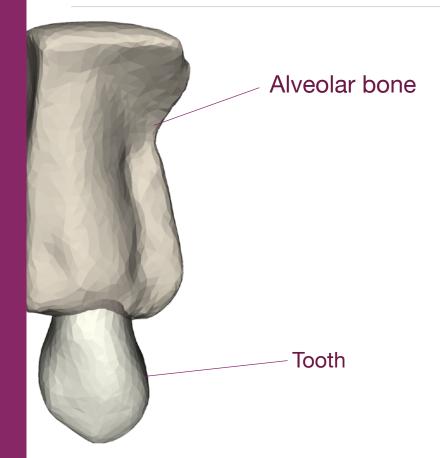
V. Sansalone¹

¹ Univ Paris Est Creteil, CNRS, MSME UMR 8208, F-94010 Creteil, France
² AP-HP, Hopital Pitie-Salpetriere, Service d'Odontologie, 47-83 Boulevard de l'Hopital, 75013 Paris, France
³ CR2P, UMR 7207, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, 8 rue Buffon CP38 75005 Paris, France

No conflict of interest to declare

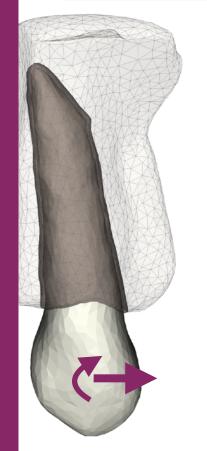
e-Workshop of the IRP Coss&Vita 13th november 2020

Clinical experience

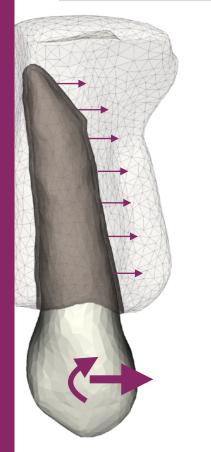


Treatment planning Side effects

Pain

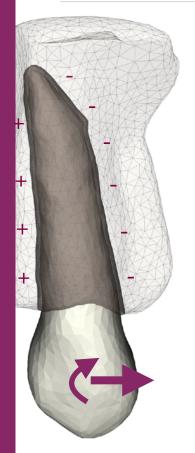

Mechanobiology

Mechanobiology



Mechanobiology

forces and moments at the bracket level

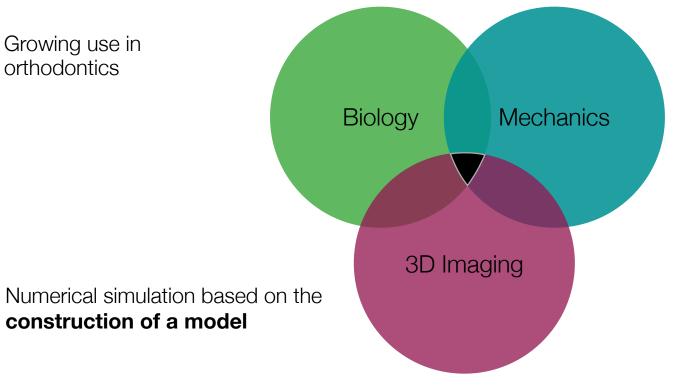


forces and moments at the bracket level

stresses and strains in the PDL and bone

Mechanobiology

forces et moments au niveau des brackets


stresses and strains in the PDL and bone

bone remodeling

Modeling by the Finite Element (FE) method

orthodontics

INTRODUCTION

Modeling by the Finite Element (FE) method

INTRODUCTION

Schematic view of reality

Depends on the data provided

Numerical simulation based on the **construction of a model**

Modeling by the Finite Element (FE) method

INTRODUCTION

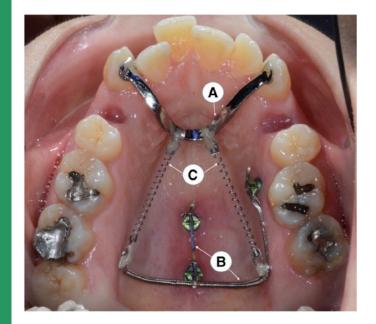
Schematic view of reality

Depends on the data provided

Orthodontic publications often have two major limitations:

- validation of results (clinical data)
- loading conditions (friction/contacts...)

Propose a new strategy for the development of a FE model of orthodontic displacement based on:


- precise patient-specific data,
- statically determinate force system.

Clinical procedure

Ethical committee approval (CPP IdF-1)

Inclusion of a patient (28 years old), treated by an original device :

- Custom-made lingual appliance for canine retraction (homemade design)
- Known loading conditions : 2 distalization forces, no friction

A - CAD-CAM rigid individualized arch

B - Rigid arch attached to 3 temporary screw

C - 2 Ni-Ti open springs (1.0 N each)

Clinical procedure

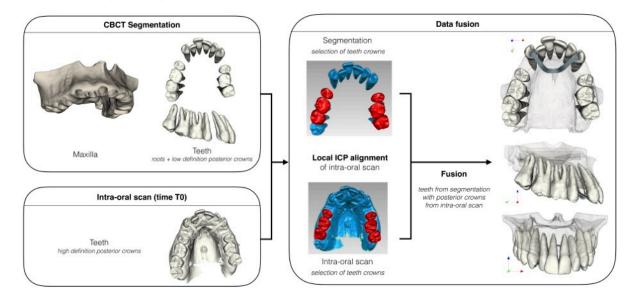
Clinical steps	то	T1	Т2	тз	Т4	Т5	Т6	Τ7	
Days	0	29	64	92	126	155	190	218	
CBCT	х							×	-

Cone beam CT (CBCT) of maxillary arch

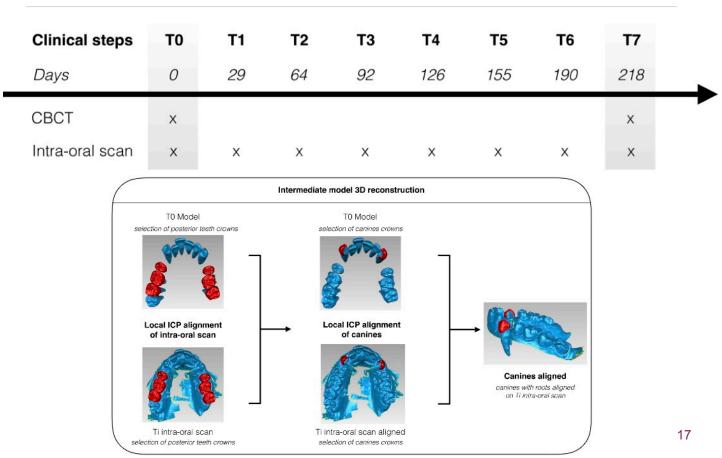
NewTom VGi EVO - 12*8 cm field of view ; 0.15 mm3 voxel size

Clinical procedure

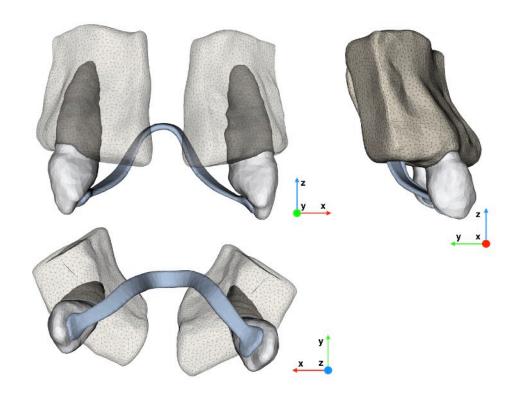
Clinical steps	то	T1	Т2	тз	Т4	Т5	Т6	Τ7	
Days	0	29	64	92	126	155	190	218	
CBCT	х							×	
Intra-oral scan	x	х	х	х	х	х	х	x	


Intraoral scan

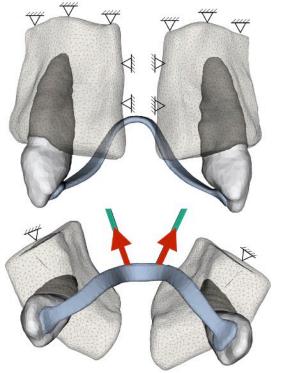
performed monthly

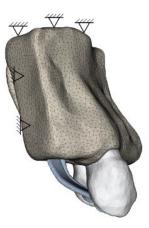

Personalized 3D surface models

Clinical steps	то	T1	T2	Т3	Τ4	Т5	Т6	Τ7	
Days	0	29	64	92	126	155	190	218	
0007									
CBCT	×							×	


16

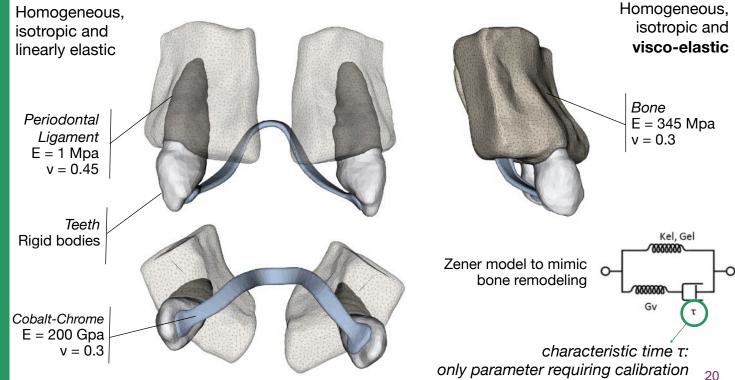
Personalized 3D surface models


Finite Element model


Personalized 3D geometry (selection of 3D areas of interest)

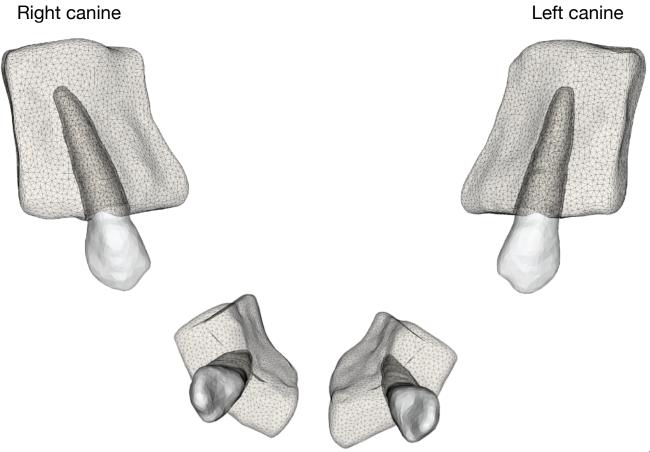
Finite Element model

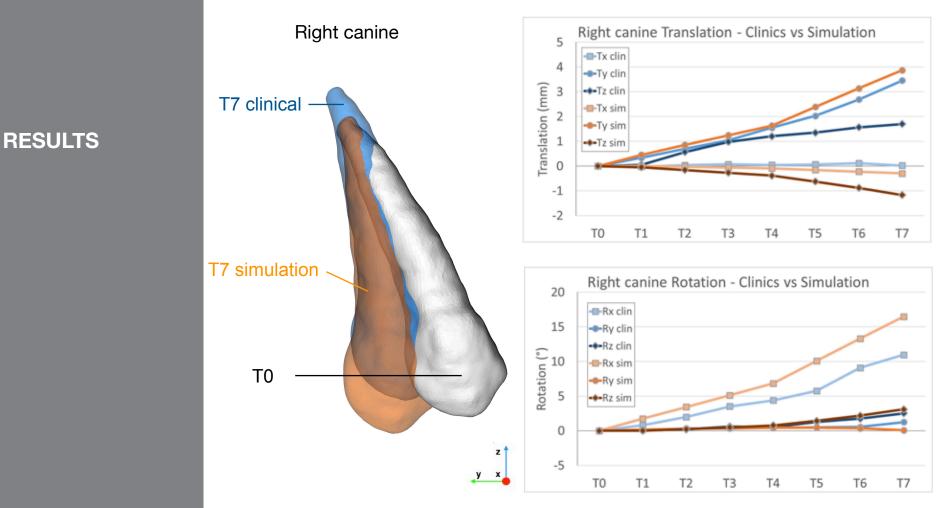
Boundary conditions and personalized loading



2 loads of 1.0 N each 3D guides based on clinical data

Finite Element model


Material properties



RESULTS

RESULTS

7 months of clinical tracking (T0 to T7)

DISCUSSION

State of the art

- Lack of validated FE model of orthodontic tooth movement and bone remodeling
- Lack of reliable data on the clinical displacement of teeth subjected to a known system of forces

DISCUSSION

State of the art

- Lack of validated FE model of orthodontic tooth movement and bone remodeling
- Lack of reliable data on the clinical displacement of teeth subjected to a known system of forces

Main results

- Successful set up of a clinical protocol to track orthodontic tooth movement
- Collection and analysis of reliable clinical data on long-term orthodontic tooth movement
- Development of a preliminary FE model simulating this displacement

Clinical results

DISCUSSION

Customized force system based on « statically determined mechanics »

Simple and known loading conditions for 7 months

(Fontenelle 1991 ; Burstone, 2015 ; Roberts 2016)

Efficient method of tooth tracking, based on CBCT and intraoral scan *Low X-ray dose Validation using final CBCT Procedure remains tedious (not suitable for clinical use)* (Lee, 2015 ; Bouton, 2017)

Unexpected tooth movement : rotation and intrusion (-z axis)

Line of action of forces too occlusal ?

Functional forces (tongue, masticatory...) non negligible ?

(Viecilli, 2015)

Preliminary FE model

Good correspondence with the clinic, except on the translation along the -z axis

Even with a carefully designed clinical setup, the model does not stick to clinical data

Importance of calibration and validation of FE models using realistic clinical data

Modeling assumptions

Simplified material behavior

Visco-elastic bone properties to mimic bone remodeling (Ludwig, 2013)

First step, could be used to answer clinical questions

> where is the center of resistance of the canines in 3D? (Viecilli, 2013)

> would we have more translation by modifying the line of action of the forces ?

DISCUSSION

Utility of finite element modeling in orthodontics

Lack of a validated model of orthodontic displacement

Utility of finite element modeling in orthodontics

Lack of a validated model of orthodontic displacement

Clinical study

Long-term data for orthodontic tooth displacement of one patient Development of a preliminary FE model simulating this displacement

CONCLUSION

Utility of finite element modeling in orthodontics

Lack of a validated model of orthodontic displacement

Clinical study

Long-term data for orthodontic tooth displacement of one patient Development of a preliminary FE model simulating this displacement

Future works

Integration of a bone remodeling algorithm

Development of a model allowing prospective simulation

CONCLUSION

Thank you for your attention

gauthier.dot@ensam.eu