Observation of the microstructure evolution during a mechanical assay on cardiac tissue

Jean-Marc ALLAIN

Equipe MEDISIM

Solid Mechanics Laboratory Ecole polytechnique, Palaiseau, France

Introduction

Heart wall:

- Cardiovascular diseases: leading cause of death in Europe
- Modification of the myocardium:
 - ♦ Structure and function closely related
 - Multiple spatial and temporal scales

⇒ Link between microscopic structure and macroscopic mechanical properties

Introduction

Microscopic structure: SEM observations

Fiber scale Cardiomyocyte + ECM layer

Mesoscopic scale

Cardiomyocyte bundle + thick collagen layer

Kanzaki et al., Circulation, 2010

Introduction

Multiscale organization

Ex. of model:

Holzapfel & Ogden, Proc. Roy. Soc. A 2009

Fiber motion: affine assumption

Observation of the microstructure evolution during a mechanical assay

Simultaneous observations of the mechanical properties and of the tissue microstructure

Coupled traction device with polarimetric microscope

ÉCOLE POLYTECHNIQUE

D IP PARIS

Experimental approach Tueni et al., Sci. Report, in press

Traction

- Sample: pig left ventricle (30x20x2 mm)
- Sample immerged in PBS
- Loading velocity: 0.1mm/s (0.04 %/s)
- Force recorded every second
- Deformation by DIC
- Pause every 10% for imaging

Experimental approach Tueni et al., Sci. Report, in press

Stretch map

- > On the lower side
- > Pixel size: $5.5x5.5 \,\mu\text{m}^2$
- Image every 15s (0.6%)
- ➢ ROI ~ 16*8cm
- Correlation domain: 550*550µm

Maps of local deformation at different stretch levels

- ♦ Heterogeneities
- Stretch comparable on upper and lower faces

ÉCOLE POLYTECHNIQUE

D IP PARIS

Experimental approach Tueni et al., Sci. Report, in press

Polarimetric measure

- > On the upper side
- ➤ Image every 10%

- Image: 515x385 pixels
- Pixel size: 100x100 µm² (sheetlet)

Tueni et al., Sci. Report, in press

Results

Evolution of the polarimetric parameters

Azimuth (#8)

10 mm

10 mm

10 mm

- ♦ No change in retardance
- No change in depolarization

- Solution Azimuth aligns in traction direction
- 𝔅 Opening of the separation lines (<*α*> ~ 90°)

Results

Tueni *et al.*, Sci. Report, in press

Comparison with an affine model

Sample #1

Predicted angles (in °)

Angular difference (in °)

Sample #8

150

100

50

Tueni *et al.,* Sci. Report, in press

Results

Comparison with an affine model

⇒ Affine model works correctly apart for samples with orientation near 90° ÉCOLE POLYTECHNIQUE

Tueni et al., Sci. Report, in press

L' L' POLYTECHNIQUE

Samples perpendicular to traction?

 $\lambda = 1$

 $\lambda = 1.35$

⇒ Separation lines open during traction

Results

Conclusions & perspectives

Conclusions

- Solution State And States Stat
 - Solution: valid almost everywhere
 - Separation lines open under traction (not shear or compression)

Perspectives

- ♦ Other cutting orientations (of tissue)
- Solution of the separation lines
- Scheduling of the polarimetric signal
- Solution Modeling of the anisotropy of the tissue

Acknowledgments

L' ÉCOLE POLYTECHNIQUE IP PARIS

Solid Mechanics Laboratory

Nicole TUENI Martin GENET

Vincent DE GREEF Hakim GHARBI Simon HALLAIS

LPICM (Ecole polytechnique)

Angelo PIERANGELO

Jérémy VIZET

PROJETEINANCE PAPER

Fundings

Labex LaSIPS (ANR-10-LABX0040-LaSIPS)