
On effective properties of beam-lattice
structures made of flexoelectric materials

Victor A. Eremeyev 1; Jean-Francois Ganghoffer2;
Mohammad Malikan1
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Our Aim is
to discuss the influence of microstructure influence on the
effective properties of thin-walled structures, i.e. bars, beams,
plates and shells, considering flexoelectricitya,b, c.

P ∼ ∇e
aZubko, et al., 2013. Flexoelectric effect in solids. Annual Review of

Materials Research 43 (1), 387-421
bYudin, P. V., Tagantsev, A. K., 2013. Fundamentals of flexoelectricity in

solids. Nanotechnology 24 (43), 432001
cWang, B. et al. 2019. Flexoelectricity in solids: Progress, challenges, and

perspectives. Progress in Materials Science 106, 100570

Here
we discuss an example of microstructured bar called pantographic
bar.
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Motivation:
At small scales flexoelectricity may play significant and even
dominant role for electromechanical coupling.
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Basic relations of flexoelectricity

we introduce the following primary variables

u = u(x, t), P = P(x, t), (1)

where u and P are vectors of displacements and electric polarization,
respectively, x is the position vector, and t is time. Here we restrict to
the pure electromechanical theory, so the energy density takes the
form

W = W(e,P,∇∇u,∇P), e =
1
2

(

∇u + (∇u)T) , (2)

where e is the strain tensor and ∇ denotes the three-dimensional
nabla-operator. If we neglect the dependence on P and ∇P in (2) we
recover the Toupin–Mindlin strain gradient elasticity. On the other
hand, if we omit in (2) only second deformation gradient ∇∇u we get
Mindlin’s theory of dielectrics. Finally, Eq. (2) can be reduced to the
piezoelectricity with constitutive equation

W = W(e,P).

Eremeyev et al. (GUT & UL) 12-13.11.2020 5



Variational principle

For flexoelectric solids there exists the variational principle

δ

∫

V

(W− 1
2
ǫ0E · E − P · E)dV = 0, (3)

where ǫ0 is a vacuum permittivity, and E is the electric field, expressed
through the electric potential φ: E = −∇φ. Last relation ensures that
Maxwell’s equation

∇× E = 0, (4)

is automatically satisfied. As a result, from (3) we get

∇ · σ = 0, σ = T −∇ · M, T =
∂W
∂e

, M =
∂W
∂∇∇u

, (5)

∇ · D = 0, D = ǫ0E + P, E ≡ −∇φ =
∂W
∂P

−∇ · ∂W
∂∇P

. (6)

Here σ is the total stress tensor, T and M are the stress and
hyper-stress tensors, respectively, and D is the electric displacement
field. Eq. (6) is another Maxwell’s equation of electrostatics.
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Energy

In what follows we consider W as a quadratic form of its arguments

W =
1
2

e : C : e +
1
2

P · A · P − P · d : e

+
1
2
∇P : B : ∇P −∇e

...F · P − e : H : ∇P +
1
2
∇∇u

...G
...∇∇u, (7)

where : and
... stand for double and triple dot products, respectively, and

several material tensors are introduced. In (7), C is a fourth-order
tensor of elastic moduli, A = χχχ−1 is a symmetric second-order
reciprocal dielectric susceptibility tensor, d is a third–order
piezoelectric tensor, B is a polarization gradient coupling fourth-order
tensor, F and H denote fourth-order flexocoupling tensors, and G is a
six-order tensor of elastic moduli related to strain-gradients.
Cijmn = Cmnij = Cjimn, other tensors also have symmetry properties:
dijk = djik , Bijmn = Bmnij, Fijmn = Fjimn, etc. Flexocoupling tensors F and
H are mutually dependent.
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From (7) we get the dependence for stress tensor

T =C : e − P · d − (H : ∇P)T. (8)

Obviously, T depends on polarization and its gradient. Using the
relations

∂W
∂P

= A · P − d : e −∇e
...F,

∂W
∂∇P

=B : ∇P − e : H, (9)

Eq. (6) transforms into

E = A · P − d : e −∇e
...F −∇ · (B : ∇P) +∇ · (e : H). (10)
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Flexoelectric tensor

In the case of homogeneous materials and when the polarization
gradient is constant from (10) we get the key equation of flexoelectricity

P = χχχ · E + E : e +µµµ
...∇e, (11)

with the fourth-order µµµ defined though the relation

µµµ
...∇e = χχχ · [∇e

...F −∇ · (e : H)] ∀ e,

here we also introduced another piezoelectric tensor E = χχχ · d. Without
electric field and for non-piezoelectric materials, that is when d = 0,
Eq. (11) reduces to

P = µµµ
...∇e. (12)

Eqs. (11) and (12) give also the possibility to introduce E and µµµ as
follows

E =
∂P
∂e
, µµµ =

∂P
∂∇e

. (13)
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Cubic symmetry and isotropy

For materials with cubic symmetry there exist only three independent
components of µµµ that are µ1111, µ1122, and µ1212

µµµ =

















µ11 µ12 µ12 0 0 0
µ12 µ11 µ12 0 0 0
µ12 µ12 µ11 0 0 0
0 0 0 µ44 0 0
0 0 0 0 µ44 0
0 0 0 0 0 µ44

















, (14)

where µ11 = µ1111, µ12 = µ1122, and µ44 = µ1212.
For isotropic materials µµµ takes the form

µµµ = µijkl Ei ⊗ Ej ⊗ Ek ⊗ El,

where

µijkl = µ1(δikδlj + δil δkj + δij δkl) + µ2(δikδlj + δil δkj − 2δij δkl), (15)

µ1 and µ2 are two independent flexoelectric moduli, and δij is the
Kronecker symbol.
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Piezoelectric solids

Neglecting flexoelectric and strain gradient contributions we come to
the constitutive equations of piezoelectric solids

W =W(e,P) =
1
2

e : C : e +
1
2

P · A · P − P · d : e, (16)

σ =T = C : e − P · d, E = A · P − d : e. (17)

Eq. (17)2 can be written also as

P = χχχ · E + E : e. (18)
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Pantographic bar
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Figure: Pantographic bar loaded by a net force F. The number of cells is
n = 8.
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Deformation of a cell
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Figure: Deformation of a pantographic cell.
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Kinematics and total energy

Considering pantographic bar elongation we get

L0 = 2nl sinα0, L = 2nl sinα, ε ≡ L − L0

L0
=

sinα
sinα0

− 1, (19)

For small deformations we have

L = L0 +∆L, ∆L = 2nlε∆α, ε = cotα0 ∆α, εyy = − tan2 α0 ε,

M = Kτ, τ = 2∆α, K = µJp/h. (20)

The total strain energy stored in all pivots is given by

Et = 2(3n− 2)K(∆α)2 = 2(3n− 2)
K

(cotα0)2 ε
2. (21)

From

δEt − δA = 0, A = F(L − L0) we get ε =
n

3n− 2
Fl
2K

sinα0. (22)

So the effective extensional stiffness is

E = 2
3n− 2

nl sinα0
K. (23)
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Torsion: three pivots
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Figure: Torsion of a pivot: a) circular cylinder, r = a, 0 ≤ z≤ h; b) circular
hyperboloid, r = (z2 + b2)1/2, −h/2 ≤ z≤ h/2, and a2 = h2/4 + b2; c) solid with
a triangular cross-section, which is an equilateral triangle of side length d,
d(0) = b, d(±h/2) = a, d(z) = b+ 4(a− b)z2/h2, −h/2 ≤ z≤ h/2.
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Circular cross-section

First, let us consider a Saint-Venant-type solution for a circular cylinder

u = θ(z)Ez × x, θ(z) = θ0z, (24)

where r, ϕ, z are the polar coordinates and Er , Eϕ and Ez are
corresponding unit base vectors, and θ0 = τ/h is a twist angle per unit
length. So here we have that

∇u =θ0Ez ⊗ Ez × x − θ0zI × Ez, e = γr(Ez ⊗ Eϕ + Eϕ ⊗ Ez), γ =
1
2
θ0

where ⊗ is the dyadic product. Obviously, here ∇e 6= 0 as e is a linear
function of r. It is given by

∇e = γ (Er ⊗ Ez ⊗ Eϕ + Er ⊗ Eϕ ⊗ Ez − Eϕ ⊗ Ez ⊗ Er − Eϕ ⊗ Er ⊗ Ez) .

Nevertheless, using (12) and (14) we get that P = 0. So no polarization
is induced by the strain gradient term, thus flexoelectric effects do not
appear for the effective homogenized pantograph. For a circular
cylinder the flexoelectric effect should be expected for less
symmetrical constitutive equations.

Eremeyev et al. (GUT & UL) 12-13.11.2020 16



Circular cylinder with variable diameter

We assume the solution in the form with z−dependent twist:

u = θ(z)Ez × x, θ(z) =

z
∫

−h/2

M
µJp(ξ)

dξ, (25)

and Jp(z) = πr4(z)/2 is the polar moment of inertia and
r(z) = (z2 + b2)1/2 is the equation of the pivot surface. We have for
cubic symmetry and for an isotropic solid

P = (µ1122 + µ1212)γ
′rEϕ, P = 2(µ1 + µ2)γ

′rEϕ, γ =
1
2
θ′. (26)

Nevertheless, the mean polarization is zero:

P̄ ≡ 〈P〉 ≡ 1
V

∫

V
P dV = 0. (27)

But the flexoelectric contribution in the energy is not zero

Wflexo=
1
2
∇P : B : ∇P −∇e

...F · P − e : H : ∇P 6= 0. (28)
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Prismatic pivot with variable cross-section

We assume a solution in the form

u = θ(z)Ez × x + ψ(x, y, z)Ez, ψ = θ0η(x, y), (29)

where η(x, y) is the warping (torsion) function and θ0 is the twist per
unit length given by

η(x, y) =
y(3x2 − y2)

6d
, K =

√
3µd4/80h.

We consider the approximate solution with ψ given by

ψ = θ′(z)
y(3x2 − y2)

6d(z)
, (30)

where θ(z) is given as before with Jp =
√

3d4(z)
48 .

Here ∇e includes the term ψ′′Ez ⊗ Ez ⊗ Ez. It produces the transverse
polarization P3 = 3µ1ψ

′′. Here the mean polarization does not vanish

P̄ ≡ 〈P〉 = P̄3Ez, P̄3 = 3µ1
1
V

∫

V
ψ′′ dx dy dz. (31)
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Symmetry requirements

Effective piezoelectricity requires some constraints on
non-centrosymmetry of flexoelectric composites

More precisely, the microstructure should break centrosymmetry

The first example is the most symmetric one, so for an isotropic
solid we have not flexoelectricity effect

For the second example we get polarization at the microscale but
it disappears after averaging.

For third example the mean polarization does not vanish, it
presents a case which exactly corresponds to the requirement of
violation of centrosymmetry and could be a good candidate for
effective piezoelectric composites
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Effective piezoelectric properties of the
pantograph

For effective 1D piezoelectric medium we have

W =
1
2

e : C : e +
1
2
χ−1

0 P · P + Wflexo. (32)

The torque is given
M = 2K tanα0 ε,

and

θ(z) =
2K tanα0

µ

z
∫

−h/2

dξ
Jp(ξ)

ε, ψ(x, y, z) =
K tanα0

3µJp(z)d(z)
y(3x2 − y2) ε.

(33)
Finally, we obtain that P̄3 = e311ε with the effective piezoelectric
modulus e311 given by

e311 = µ1
K tanα0

µV

∫

V

d2

dz2

y(3x2 − y2)

Jp(z)d(z)
dx dy dz. (34)

Eremeyev et al. (GUT & UL) 12-13.11.2020 20



References

Eremeyev, V.A., Ganghoffer, J.F., Konopińska-Zmysłowska, V. and Uglov,
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Conclusions

1 The effective piezoelectric properties of microstructured flexoelectric
structures is discussed;

2 A pantographic bar is considered as the first example;

3 The presented results shown that the effective properties strongly
depend on the microstructure;

4 Other examples for bending dominant flexoelectric structures will be
analyzed in more details such as laminated plates or beams.
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Thank you for your attention!!!

Further questions:
eremeyev.victor@gmail.com
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