Tuning effective dynamical properties of periodic media by FFT-accelerated topological optimization

Rémi Cornaggia, Cédric Bellis

Institut d'Alembert, Sorbonne Université, Paris, France Laboratoire de mécanique et d'acoustique, Marseille, France

IRP Coss&Vita - ELADYN-BIO Workshop

Zoom, November 12th, 2020





EL OQO

(日) (四) (日) (日) (日)

## Control of wave propagation using periodic structures



[Celli and Gonella, 2015]

- ... to design waveguides
  - with resonators for long wavelengths / low frequencies
  - with Bragg effects for medium wavelengths / frequencies

JI NOR

イロト イボト イヨト イヨト

## Control of wave propagation using periodic structures



[Celli and Gonella, 2015]

- ... to design waveguides
  - with resonators for long wavelengths / low frequencies
  - with Bragg effects for medium wavelengths / frequencies
- ... to design seismic protections (with resonators)



... and more (negative effective properties, cloaking ...)

イロト イヨト イヨト

# Control of wave propagation using periodic structures



... to design waveguides

- $\bullet$  with resonators for long wavelengths / low frequencies
- $\bullet\,$  with Bragg effects for medium wavelengths / frequencies
- ... to design seismic protections (with resonators)



... and more (negative effective properties, cloaking ...)

#### How to obtain desired properties ?

- Known design (cylinders, spheres, cones, LEGO bricks ...) ⇒ parameter optimization [Huang et al., 2016, Palermo et al., 2016] ...
- Given materials, unknown design ⇒ topological optimization [Vondřejc et al., 2017, Kook and Jensen, 2017, Allaire and Yamada, 2018] ...

This work: topological optimization of *dispersive properties* (long wavelengths, no resonances)

## Outline

#### Introduction

#### Optimization problem and modeling tools

- Dispersive model obtained by second-order homogenization
- Optimization problem
- Topological derivatives: sensitivity to a phase change
- FFT-based algorithm to solve cell problems

#### Optimization algorithm and examples

- Pixel-by-pixel approach
- · Level-set representation of the unit cell and projection algorithm
- Fitting an objective phase velocity

#### Conclusions and perspectives

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

Second-order homogenization for waves in a periodic medium [Bensoussan et al., 1978, Boutin and Auriault, 1993, Andrianov et al., 2008, Wautier and Guzina, 2015] ...



• Antiplane shear waves in the time-harmonic regime:

$$\operatorname{div}\left[\mu\left(\frac{\pmb{x}}{\ell}\right)\pmb{\nabla} u_{\ell}\right] + \rho\left(\frac{\pmb{x}}{\ell}\right)\omega^{2}u_{\ell} = 0$$

- $(\mu, \rho)$ : Y-periodic shear modulus and density
- Two-scale expansion for *long wavelengths*  $\lambda > \ell$ :

$$u_{\ell}(\boldsymbol{x}) = \underbrace{U(\boldsymbol{x})}_{\text{mean field}} + \underbrace{\ell \nabla U(\boldsymbol{x}) \cdot \boldsymbol{P}(\boldsymbol{x}/\ell) + \dots}_{\text{oscillatory correctors}}$$

A B A B A B A

Second-order homogenization for waves in a periodic medium [Bensoussan et al., 1978, Boutin and Auriault, 1993, Andrianov et al., 2008, Wautier and Guzina, 2015] ...



• Antiplane shear waves in the time-harmonic regime:

$$\operatorname{div}\left[\mu\left(\frac{\pmb{x}}{\ell}\right)\boldsymbol{\nabla}u_{\ell}\right] + \rho\left(\frac{\pmb{x}}{\ell}\right)\omega^{2}u_{\ell} = 0$$

- $(\mu, \rho)$ : Y-periodic shear modulus and density
- Two-scale expansion for long wavelengths  $\lambda > \ell$ :

$$u_{\ell}(\boldsymbol{x}) = \underbrace{U(\boldsymbol{x})}_{\text{mean field}} + \underbrace{\ell \nabla U(\boldsymbol{x}) \cdot \boldsymbol{P}(\boldsymbol{x}/\ell) + \dots}_{\text{oscillatory correctors}}$$

イロト イボト イヨト イヨト

Second-order homogenized equation for the mean field U:

$$\left[\boldsymbol{\mu}_{0} + \ell^{2}\boldsymbol{\mu}_{2}:\boldsymbol{\nabla}^{2}\right]:\boldsymbol{\nabla}^{2}U + \omega^{2}\left[\underline{\varrho_{0}} + \ell^{2}\underline{\varrho_{2}}:\boldsymbol{\nabla}^{2}\right]U = 0$$

 $(\mu_0, \varrho_0, \mu_2, \varrho_2)$ : constant *tensors* obtained from *cell solutions* (P, Q, R):

$$(Y,\mu,\rho) \implies \begin{cases} \boldsymbol{P} = (P_1,P_2) \\ \boldsymbol{Q} = (Q_{11},Q_{12},Q_{22}) \\ \boldsymbol{R} = (R_{111},R_{112},R_{122},R_{222}) \end{cases} \implies \begin{cases} \varrho_0 = \langle \rho \rangle = \text{mean of } \rho \text{ on } Y \\ \mu_0 = \langle \mu(\boldsymbol{I} + \boldsymbol{\nabla} \boldsymbol{P}) \rangle \\ \varrho_2 = \langle \rho \boldsymbol{Q} \rangle \\ \mu_0 = \langle \mu(\boldsymbol{I} \otimes \boldsymbol{O} + \boldsymbol{\nabla} \boldsymbol{R}) \rangle \end{cases}$$

## Approximation of dispersion

• Plane wave mean field  $U(x,t) = \exp\left[i(k\boldsymbol{d}\cdot\boldsymbol{x} - \omega t)\right] \Longrightarrow$  dispersion relation  $\omega = \omega(k,\boldsymbol{d})$ .

• Phase velocity for the second-order homogenized model:

$$c(k, \mathbf{d}) = \frac{\omega(k, \mathbf{d})}{k} = \underbrace{c_0(\mathbf{d})}_{\text{limit velocity}} + \underbrace{\Delta c(k, \mathbf{d})}_{\text{dispersion}}$$
$$= c_0(\mathbf{d}) + \frac{1}{2} \frac{\gamma(\mathbf{d})}{c_0(\mathbf{d})} (k\ell)^2 + o\left((k\ell)^2\right) \text{ as } k\ell \sim \frac{\ell}{\lambda} \to 0$$

$$c_0(\boldsymbol{d}) = \sqrt{\frac{\boldsymbol{\mu}_0}{\varrho_0} : (\boldsymbol{d} \otimes \boldsymbol{d})} \quad \text{and} \quad \gamma(\boldsymbol{d}) = \left[\frac{\boldsymbol{\varrho}_2 \otimes \boldsymbol{\mu}_0 - \boldsymbol{\varrho}_0 \boldsymbol{\mu}_2}{(\boldsymbol{\varrho}_0)^2}\right] :: (\boldsymbol{d} \otimes \boldsymbol{d} \otimes \boldsymbol{d} \otimes \boldsymbol{d})$$

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

## Approximation of dispersion

• Plane wave mean field  $U(x,t) = \exp[i(k\mathbf{d} \cdot \mathbf{x} - \omega t)] \Longrightarrow$  dispersion relation  $\omega = \omega(k, \mathbf{d})$ .

• Phase velocity for the second-order homogenized model:

$$c(k, d) = \frac{\omega(k, d)}{k} = \underbrace{c_0(d)}_{\text{limit velocity}} + \underbrace{\Delta c(k, d)}_{\text{dispersion}} \\ = c_0(d) + \frac{1}{2} \frac{\gamma(d)}{c_0(d)} (k\ell)^2 + o\left((k\ell)^2\right) \text{ as } k\ell \sim \frac{\ell}{\lambda} \to 0$$

$$c_0(d) = \sqrt{\frac{\mu_0}{\varrho_0}} : (d \otimes d) \text{ and } \gamma(d) = \left[\frac{\varrho_2 \otimes \mu_0 - \varrho_0 \mu_2}{(\varrho_0)^2}\right] :: (d \otimes d \otimes d \otimes d)$$

$$(\mu = \frac{1}{\rho = 1}, \mu = \frac{1}{\rho =$$

Rémi Cornaggia

### Cost functionals and optimization problem

• Given given  $N_{ heta}$  directions  $(d_1, \ldots, d_{N_{ heta}})$  of interest, a *cost functional*  $\mathcal J$  can be defined as:

$$\mathcal{J}(\mu,\rho) = J\left(c_0(\boldsymbol{d}_1),\ldots,c_0(\boldsymbol{d}_{N_{\boldsymbol{\theta}}});\boldsymbol{\gamma}(\boldsymbol{d}_1),\ldots,\boldsymbol{\gamma}(\boldsymbol{d}_{N_{\boldsymbol{\theta}}})\right)$$

• Example: to minimize  $|\gamma(d^-)|$  and maximize  $|\gamma(d^+)|$  :

$$\mathcal{J}(\boldsymbol{\mu},\boldsymbol{\rho}) = \frac{1}{2} \left[ \left[ \gamma(\boldsymbol{d}^{-}) \right]^{2} + \frac{1}{\left[ \gamma(\boldsymbol{d}^{+}) \right]^{2}} \right]$$

### Cost functionals and optimization problem

• Given given  $N_{\theta}$  directions  $(d_1, \ldots, d_{N_{\theta}})$  of interest, a *cost functional*  $\mathcal{J}$  can be defined as:

$$\mathcal{J}(\mu,\rho) = J\left(c_0(\boldsymbol{d}_1),\ldots,c_0(\boldsymbol{d}_{N_{\boldsymbol{\theta}}});\boldsymbol{\gamma}(\boldsymbol{d}_1),\ldots,\boldsymbol{\gamma}(\boldsymbol{d}_{N_{\boldsymbol{\theta}}})\right)$$

• Example: to minimize  $|\gamma(d^-)|$  and maximize  $|\gamma(d^+)|$  :

$$\mathcal{J}(\boldsymbol{\mu},\boldsymbol{\rho}) = \frac{1}{2} \left[ \left[ \gamma(\boldsymbol{d}^{-}) \right]^{2} + \frac{1}{\left[ \gamma(\boldsymbol{d}^{+}) \right]^{2}} \right]$$

#### Topological optimization problem

Find the distribution of  $(\mu, \rho)$  in Y that minimizes  $\mathcal{J}(\mu, \rho)$ , with

- the dependencies  $(\mu, \rho) \rightarrow (\mathbf{P}, \mathbf{Q}, \mathbf{R}) \rightarrow (\underline{\varrho}_0, \mu_0, \underline{\varrho}_2, \mu_2) \rightarrow \{c_0(d_j), \gamma(d_j)\}_{j=1..N_{\theta}} \rightarrow \mathcal{J}$
- Constraints / parametrization of  $(\mu, \rho)$  (to simplify the problem)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

### Cost functionals and optimization problem

• Given given  $N_{\theta}$  directions  $(d_1, \ldots, d_{N_{\theta}})$  of interest, a *cost functional*  $\mathcal{J}$  can be defined as:

$$\mathcal{J}(\mu,\rho) = J\left(c_0(\boldsymbol{d}_1),\ldots,c_0(\boldsymbol{d}_{N_{\boldsymbol{\theta}}});\boldsymbol{\gamma}(\boldsymbol{d}_1),\ldots,\boldsymbol{\gamma}(\boldsymbol{d}_{N_{\boldsymbol{\theta}}})\right)$$

• Example: to minimize  $|\gamma(d^-)|$  and maximize  $|\gamma(d^+)|$  :

$$\mathcal{J}(\boldsymbol{\mu},\boldsymbol{\rho}) = \frac{1}{2} \left[ \left[ \gamma(\boldsymbol{d}^{-}) \right]^{2} + \frac{1}{\left[ \gamma(\boldsymbol{d}^{+}) \right]^{2}} \right]$$

#### Topological optimization problem

Find the distribution of  $(\mu, \rho)$  in Y that minimizes  $\mathcal{J}(\mu, \rho)$ , with

- the dependencies  $(\mu, \rho) \rightarrow (\mathbf{P}, \mathbf{Q}, \mathbf{R}) \rightarrow (\underline{\varrho}_0, \mu_0, \underline{\varrho}_2, \mu_2) \rightarrow \{c_0(d_j), \gamma(d_j)\}_{j=1..N_{\theta}} \rightarrow \mathcal{J}$
- Constraints / parametrization of  $(\mu, \rho)$  (to simplify the problem)
- Matrix and inclusions, inclusion shape parametrization and shape sensitivity [Vondřejc et al., 2017]
- Two-phase material, *level-set* description of the interface and shape sensitivity [Allaire and Yamada, 2018]
- Two-phase material and **topological derivative** to quantify the effects of a phase change [Amstutz, 2011, Oliver et al., 2018] (optimization of *static* properties of microstructures)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Topological derivative of a cost functional



三日 のへで

イロト イヨト イヨト イヨト

## Topological derivative of a cost functional



- Phase change in the unit cell:  $(\mu, \rho) \rightarrow (\mu_a, \rho_a) = (\mu, \rho) + \chi_{B_a}(\Delta \mu, \Delta \rho)$
- Expansion of  $\mathcal{J}$ :

$$\mathcal{J}(\mu_a, \rho_a) = \mathcal{J}(\mu, \rho) + a^2 \mathcal{D}\mathcal{J} + o(a^2) \text{ as } a \to 0$$

•  $\mathcal{DJ}(\mu, \rho; \mathbf{z}, \mathcal{B}, \Delta\mu, \Delta\rho)$  is the topological derivative (or gradient, or sensitivity) of  $\mathcal{J}$ . [Sokolowski and Zochowski, 1999, Garreau et al., 2001, Amstutz, 2011, Bonnet et al., 2013] ...

イロト イヨト イヨト イヨト

## Topological derivative of a cost functional



- Phase change in the unit cell:  $(\mu, \rho) \rightarrow (\mu_a, \rho_a) = (\mu, \rho) + \chi_{B_a}(\Delta \mu, \Delta \rho)$
- Expansion of  $\mathcal{J}$ :

$$\mathcal{J}(\mu_a,\rho_a) \;=\; \mathcal{J}(\mu,\rho) + a^2 \, \mathcal{D}\mathcal{J} + o(a^2) \quad \text{as} \ a \to 0$$

- $\mathcal{DJ}(\mu, \rho; \mathbf{z}, \mathcal{B}, \Delta\mu, \Delta\rho)$  is the topological derivative (or gradient, or sensitivity) of  $\mathcal{J}$ . [Sokolowski and Zochowski, 1999, Garreau et al., 2001, Amstutz, 2011, Bonnet et al., 2013] ...
- Chain rule when  $\mathcal{J}(\mu, \rho) = J(\varrho_0, \mu_0, \varrho_2, \mu_2)$ :

$$\mathcal{DJ} = \frac{\partial J}{\partial \varrho_0} \mathcal{D} \varrho_0 + \frac{\partial J}{\partial \boldsymbol{\mu}_0} : \mathcal{D} \boldsymbol{\mu}_0 + \frac{\partial J}{\partial \boldsymbol{\varrho}_2} : \mathcal{D} \boldsymbol{\varrho}_2 + \frac{\partial J}{\partial \boldsymbol{\mu}_2} :: \mathcal{D} \boldsymbol{\mu}_2.$$

## Cell problems and FFT-based algorithm

Computing  $(\mathcal{D}_{\varrho_0}, \mathcal{D}_{\mu_0}, \mathcal{D}_{\varrho_2}, \mathcal{D}_{\mu_2})$  requires the resolution of:

3 cell problems P, Q, R2 adjoint cell problems  $\beta$  and  $X[\beta]$  12 scalar cell problems

[Bonnet, Cornaggia, Guzina, SIAP 2018]

All cell problems are static equilibrium problems: for  $\chi = P, Q, R, \beta$  or  $X[\beta]$ ,

$$\begin{split} & \boldsymbol{\nabla} \cdot \left[ \boldsymbol{\mu}(\boldsymbol{E} + \boldsymbol{\nabla} \boldsymbol{\chi}) \right] + \boldsymbol{f} = \boldsymbol{0} \quad \text{in } Y, \\ & \boldsymbol{\chi} \text{ is } Y \text{-periodic,} \\ & \langle \boldsymbol{\chi} \rangle = 0, \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Cell problems and FFT-based algorithm

Computing  $(\mathcal{D}\varrho_0, \mathcal{D}\mu_0, \mathcal{D}\varrho_2, \mathcal{D}\mu_2)$  requires the resolution of:

3 cell problems P, Q, R2 adjoint cell problems  $\beta$  and  $X[\beta]$  12 scalar cell problems

[Bonnet, Cornaggia, Guzina, SIAP 2018]

All cell problems are static equilibrium problems: for  $\chi = P, Q, R, \beta$  or  $X[\beta]$ ,

$$\begin{aligned} & \left[ \boldsymbol{\nabla} \cdot \left[ \boldsymbol{\mu}(\boldsymbol{E} + \boldsymbol{\nabla} \boldsymbol{\chi}) \right] + \boldsymbol{f} = \boldsymbol{0} \quad \text{in } \boldsymbol{Y}, \\ & \boldsymbol{\chi} \text{ is } \boldsymbol{Y}\text{-periodic,} \\ & \langle \boldsymbol{\chi} \rangle = \boldsymbol{0}, \end{aligned}$$

Numerical resolution:

- Finite elements (FreeFem++, Comsol, Fenics, Xlife++ ...)
- FFT-based methods [Moulinec and Suquet, 1998, Moulinec et al., 2018]
  - Problem reformulation: Lippmann-Schwinger integral equation involving a reference material
  - Fixed-point algorithm
  - Extensive use of FFT to compute convolution products
  - Discretisation of the cell on *pixels*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Outline

#### Introduction

#### 2 Optimization problem and modeling tools

- Dispersive model obtained by second-order homogenization
- Optimization problem
- Topological derivatives: sensitivity to a phase change
- FFT-based algorithm to solve cell problems

#### Optimization algorithm and examples

- Pixel-by-pixel approach
- Level-set representation of the unit cell and projection algorithm
- Fitting an objective phase velocity

#### Conclusions and perspectives

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

### Pixel-by-pixel two-directions optimization

• Directions of interest  $d^- = e_1$  (horizontal),  $d^+ = e_2$  (vertical).

$$\mathcal{J}(\boldsymbol{\mu}, \boldsymbol{\rho}) = \frac{1}{2} \left[ \left[ \gamma(\boldsymbol{d}^{-}) \right]^{2} + \frac{1}{\left[ \gamma(\boldsymbol{d}^{+}) \right]^{2}} \right]$$

- Two-phase unit cell:  $Y = Y_1 \cup Y_2$ , with:
  - material ratios  $\rho_2 = 2\rho_1$  and  $\mu_2 = 2\mu_1 \Rightarrow$  uniform wavespeed
  - equal phase ratio:  $|Y_1| = |Y_2|$
- Pixel-by-pixel algorithm:
  - Initialize material repartition  $(Y_1, Y_2)$  with  $|Y_1| = |Y_2|$
  - $\blacktriangleright \ \ \, \text{While} \ (\min_{Y_1} \mathcal{DJ} + \min_{Y_2} \mathcal{DJ}) < 0, \ \text{exchange the two pixels where the minima are reached}$
  - ▶ |Y<sub>1</sub>| = |Y<sub>2</sub>| is automatically respected



EL OQO

イロト イヨト イヨト

## Pixel-by-pixel two-directions optimization - cost functional and dispersions



Computational remarks:

- 241 iterations
- 1205 cell and adjoint cell problems i.e. 2892 scalar cell problems on a  $32 \times 32$  grid
- Moulinec-Suquet FFT method (tolerance on relative residual error:  $10^{-8}$ ) implemented using Python.
- $\Longrightarrow pprox$  15-20s on a (good) laptop.

315

イロト イヨト イヨト イ

## Level-set representation and projection algorithm

[Amstutz and Andrä, 2006, Amstutz, 2011]

• Material distribution at iteration n represented by a level-set function  $\psi^n$ :

$$(\star) \begin{cases} \psi^n > 0 & \quad \text{in } Y_1 \\ \psi^n < 0 & \quad \text{in } Y_2 \end{cases} \quad \text{and} \quad \|\psi^n\|_{L^2(Y)} = 1$$

• Signed and normalized TD  $\overline{\mathcal{D}}\mathcal{J}$ :

$$\widetilde{\mathcal{D}}\mathcal{J} := \begin{cases} \mathcal{D}\mathcal{J} & \text{ in } Y_1 \\ -\mathcal{D}\mathcal{J} & \text{ in } Y_2 \end{cases} \quad \text{and} \quad \overline{\mathcal{D}}\mathcal{J} := \frac{\widetilde{\mathcal{D}}\mathcal{J}}{\|\widetilde{\mathcal{D}}\mathcal{J}\|_{L^2(Y)}}$$

• Optimality condition:

If  $\overline{\mathcal{D}}\mathcal{J}$  satisfies the sign condition (\*) then  $\mathcal{D}\mathcal{J}(z) > 0 \quad \forall z \in Y$ then  $\mathcal{J}$  reached a *local minimum* 

In particular, it is true if  $\psi^N = \overline{\mathcal{D}}\mathcal{J}(\psi^N)$  for some iteration N.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

## Level-set representation and projection algorithm

[Amstutz and Andrä, 2006, Amstutz, 2011]

• Material distribution at iteration n represented by a level-set function  $\psi^n\colon$ 

$$(\star) \begin{cases} \psi^n > 0 & \quad \text{in } Y_1 \\ \psi^n < 0 & \quad \text{in } Y_2 \end{cases} \quad \text{and} \quad \|\psi^n\|_{L^2(Y)} = 1$$

• Signed and normalized TD  $\overline{\mathcal{D}}\mathcal{J}$ :

$$\widetilde{\mathcal{D}}\mathcal{J} := \begin{cases} \mathcal{D}\mathcal{J} & \text{ in } Y_1 \\ -\mathcal{D}\mathcal{J} & \text{ in } Y_2 \end{cases} \quad \text{and} \quad \overline{\mathcal{D}}\mathcal{J} := \frac{\widetilde{\mathcal{D}}\mathcal{J}}{\|\widetilde{\mathcal{D}}\mathcal{J}\|_{L^2(Y)}}$$

• Optimality condition:

If  $\overline{\mathcal{D}}\mathcal{J}$  satisfies the sign condition  $(\star)$  then  $\mathcal{D}\mathcal{J}(z) > 0 \quad \forall z \in Y$ then  $\mathcal{J}$  reached a *local minimum* 

In particular, it is true if  $\psi^N = \overline{\mathcal{D}}\mathcal{J}(\psi^N)$  for some iteration N.

Update of  $\psi$  by *projection* onto  $\overline{\mathcal{D}}\mathcal{J}$ :

$$\psi^{n+1} = \mathbf{a_n}\psi^n + \mathbf{b_n}\overline{\mathcal{D}}\mathcal{J}(\psi^n)$$

 $(a_n, b_n)$  are chosen so that  $\|\psi^{n+1}\|_{L^2(Y)} = 1$  and  $\mathcal{J}(\psi^{n+1}) < \mathcal{J}(\psi^n)$ 

Two-directions optimization by projection algorithm (with phase ratio constraint  $|Y_1| = |Y_2|$ )



November 12th, 2020 13 / 21

Maximizing horizontal and vertical and minimizing diagonal dispersions

- Recall :  $c(k, d) = c_0(d) + \frac{1}{2}(k\ell)^2 \frac{\gamma(d)}{c_0(d)} + o\left((k\ell)^2\right)$
- Cost functional:

$$J_{4d} = \frac{1}{2} \sum_{j=1}^{2} \left( \frac{\gamma(d_j)}{c_0(d_j)} \right)^{-2} + \frac{1}{2} \sum_{j=3}^{4} 10 \left( \frac{\gamma(d_j)}{c_0(d_j)} \right)^{2}$$
$$d_j = (\cos \theta_j, \sin \theta_j), \quad \theta_{1,2} = 0, 90^\circ, \quad \theta_{3,4} = \pm 45^\circ$$



• Material ratios:  $\mu_2/\mu_1 = 6$  and  $\rho_2/\rho_1 = 1.5$ 



Rémi Cornaggia

November 12th, 2020 14 / 21

### Other initializations with the same result



< □ > < □ > < □ > < □ > < □ >

ELE DQC

### Initializations leading to sub-optimal results



三日 のへの

イロト イヨト イヨト イヨト

## Bloch-Floquet analysis of the optimal unit cell



- Fit of the optimal inclusion by a quartic curve.
- Finite element meshing using FREEFEM++ [Hecht, 2012, Laude, 2015]
- Computation of the first two Bloch frequencies in the reduced Brillouin zone.



## Fitting an objective anisotropic phase velocity $c^{\rm obj}$

• Goal: fitting phase velocity:

$$c^{\mathrm{obj}}(k_p, \boldsymbol{d}_j) = c_0^{\mathrm{obj}}(\boldsymbol{d}_j) + \Delta c^{\mathrm{obj}}(k_p, \boldsymbol{d}_j), \qquad p = 1..N_k, \quad j = 1..N_{\theta}$$

• Quasistatic and dispersive least-square cost functionals:

$$\mathcal{J}^{\text{stat}} = \frac{1}{2} \sum_{j=1}^{N_{\theta}} \left[ c_0(\boldsymbol{d}_j) - c_0^{\text{obj}}(\boldsymbol{d}_j) \right]^2, \quad \mathcal{J}^{\text{dyn}} = \frac{1}{2} \sum_{j=1}^{N_{\theta}} \sum_{p=1}^{N_k} \left[ \Delta c(k_p, \boldsymbol{d}_j) - \Delta c^{\text{obj}}(k_p, \boldsymbol{d}_j) \right]^2$$

• Weighted total cost functional:

$$\mathcal{J} = \alpha \mathcal{J}^{\text{stat}} + \mathcal{J}^{\text{dyn}}$$

EL OQO

イロト イヨト イヨト

## Fitting an objective anisotropic phase velocity $c^{\rm obj}$

• Goal: fitting phase velocity:

 $c^{\mathrm{obj}}(k_p, \boldsymbol{d}_j) = c_0^{\mathrm{obj}}(\boldsymbol{d}_j) + \Delta c^{\mathrm{obj}}(k_p, \boldsymbol{d}_j), \qquad p = 1..N_k, \quad j = 1..N_\theta$ 

• Quasistatic and dispersive least-square cost functionals:

$$\mathcal{J}^{\text{stat}} = \frac{1}{2} \sum_{j=1}^{N_{\theta}} \left[ c_0(\boldsymbol{d}_j) - c_0^{\text{obj}}(\boldsymbol{d}_j) \right]^2, \quad \mathcal{J}^{\text{dyn}} = \frac{1}{2} \sum_{j=1}^{N_{\theta}} \sum_{p=1}^{N_{k}} \left[ \Delta c(k_p, \boldsymbol{d}_j) - \Delta c^{\text{obj}}(k_p, \boldsymbol{d}_j) \right]^2$$

• Weighted total cost functional:

$$\mathcal{J} = \alpha \mathcal{J}^{\text{stat}} + \mathcal{J}^{\text{dyn}}$$

#### Example: chessboard reconstruction



Data and constraints:

- $c^{\text{obj}} = c^{\text{chess}}$  (Floquet-Bloch,  $N_{\theta} = 7$ ,  $N_k = 10$ )
- Exact material ratios
- Exact phase ratio  $|Y_1| = |Y_2| = 1/2$

(日) (四) (日) (日) (日) (日)

### Chessboard reconstruction from phase velocity data

$$\boldsymbol{\alpha} = \boldsymbol{0} \qquad (\mathcal{J} = \mathcal{J}^{\mathrm{dyn}})$$



November 12th, 2020 19 / 21

### Chessboard reconstruction from phase velocity data



November 12th, 2020 19 / 21

### Chessboard reconstruction from phase velocity data



November 12th, 2020 19 / 21

### Conclusions

- A topological optimization procedure is proposed, combining
  - A second-order dispersive homogenized model
  - The topological derivatives of this models's coefficients
  - A mixed algorithm combining level-set projection and pixel-by-pixel phase changes
    - FFT-based algorithm to solve cell problems
- The procedure is applied to various cost functionals to achieve
  - Maximization of dispersion in given directions
  - Qualitative identification of microstructures from effective behavior

ELE SQC

イロト イヨト イヨト イヨト

### Conclusions

- A topological optimization procedure is proposed, combining
  - A second-order dispersive homogenized model
  - The topological derivatives of this models's coefficients
  - A mixed algorithm combining level-set projection and pixel-by-pixel phase changes
    - FFT-based algorithm to solve cell problems
- The procedure is applied to various cost functionals to achieve
  - Maximization of dispersion in given directions
  - Qualitative identification of microstructures from effective behavior

### Perspectives

- Time-domain simulations of waves in the designed materials
- Extend the method to other geometrical and physical frameworks:
  - 1. Periodic interfaces: optimize effective transmission conditions [Marigo et al., 2017]
  - 2. Elasticity: links with strain/stress gradient models [Auffray et al., 2015].
  - 3. High contrasts [Pham et al., 2017] or high frequencies [Guzina et al., 2019] to optimize band-gaps, memory effects ...
- Improve the optimization algorithm
  - Compute a *pixel derivative* to work at a discrete level
  - Couple shape and topological derivative [Allaire et al., 2005, Amstutz et al., 2018]

## Thanks for your attention !

Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media. Marc Bonnet, Rémi Cornaggia, Bojan B. Guzina, SIAM Journal on Applied Mathematics, 2018

Tuning effective dynamical properties of periodic media by FFT-accelerated topological optimization Rémi Cornaggia, Cédric Bellis International Journal for Numerical Methods in Engineering, 2020

https://cv.archives-ouvertes.fr/remi-cornaggia

ELE DOC

イロト イボト イヨト イヨト

## References



Allaire, G., de Gournay, F., Jouve, F., and Toader, A.-M. (2005).

Structural optimization using topological and shape sensitivity via a level set method.

Control and Cybernetics, 34(1):59-80.

Allaire, G. and Yamada, T. (2018).

Optimization of dispersive coefficients in the homogenization of the wave equation in periodic structures.

Numerische Mathematik, 140(2):265-326.



#### Amstutz, S. (2011).

Analysis of a level set method for topology optimization. Optimization Methods and Software, 26(4-5):555–573.

#### Amstutz, S. and Andrä, H. (2006).

A new algorithm for topology optimization using a level-set method.

Journal of Computational Physics, 216(2):573 - 588.

#### Amstutz, S., Dapogny, C., and Ferrer, À. (2018).

A consistent relaxation of optimal design problems for coupling shape and topological derivatives. *Numerische Mathematik*, 140(1):35–94.

Andrianov, I. V., Bolshakov, V. I., Danishevs'kyy, V. V., and

#### Weichert, D. (2008).

Higher order asymptotic homogenization and wave propagation in periodic composite materials.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 464(2093):1181–1201.

Auffray, N., Dirrenberger, J., and Rosi, G. (2015).

A complete description of bi-dimensional anisotropic strain-gradient elasticity.

International Journal of Solids and Structures, 69-70:195-206.



Bensoussan, A., Lions, J. L., and Papanicolau, G. (1978). Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam.

**E** 

Bonnet, M., Cornaggia, R., and Guzina, B. (2018). Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media. *SIAM Journal on Applied Mathematics*. 78(4):2057–2082.

#### Boutin, C. and Auriault, J. (1993).

Rayleigh scattering in elastic composite materials. International Journal of Engineering Science, 31(12):1669–1689.

#### Celli, P. and Gonella, S. (2015).

Manipulating waves with lego bricks: A versatile experimental platform for metamaterial architectures.

Applied Physics Letters, 107(8).



#### Garreau, S., Guillaume, P., and Masmoudi, M. (2001).

The topological asymptotic for pde systems: The elasticity case. SIAM Journal on Control and Optimization, 39(6):1756–1778.



#### Guzina, B. B., Meng, S., and Oudghiri-Idrissi, O. (2019).

A rational framework for dynamic homogenization at finite wavelengths and frequencies.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2223):20180547.

Hecht, F. (2012).

New development in freefem++.

#### J. Numer. Math., 20(3-4):251-265.

Huang, Y., Liu, S., and Zhao, J. (2016). A gradient-based optimization method for the design of layered phononic band-gap materials.

Acta Mechanica Solida Sinica, 29(4):429 - 443.

#### Kook, J. and Jensen, J. S. (2017).

Topology optimization of periodic microstructures for enhanced loss factor using acoustic-structure interaction. International Journal of Solids and Structures, pages -.



Laude, V. (2015).

Phononic crystals. De Gruvter.

#### Marigo, J.-J., Maurel, A., Pham, K., and Sbitti, A. (2017). Effective dynamic properties of a row of elastic inclusions: The case

of scalar shear waves.

Journal of Elasticity, 128(2):265-289.

#### Moulinec, H. and Suguet, P. (1998).

A numerical method for computing the overall response of nonlinear composites with complex microstructure.

Computer Methods in Applied Mechanics and Engineering. 157(1):69 - 94.



Moulinec, H., Suguet, P., and Milton, G. W. (2018).

Convergence of iterative methods based on Neumann series for composite materials: Theory and practice.

International Journal for Numerical Methods in Engineering, 114(10):1103-1130.



Oliver, J., Ferrer, A., Cante, J. C., Giusti, S. M., and Lloberas-Valls, O. (2018). On Multi-scale Computational Design of Structural Materials Using the Topological Derivative, pages 289-308. Springer International Publishing, Cham.

Palermo, A., Krödel, S., Marzani, A., and Daraio, C. (2016). Engineered metabarrier as shield from seismic surface waves. Scientific Reports, 6(1).

#### Pham, K., Maurel, A., and Marigo, J.-J. (2017).

Two scale homogenization of a row of locally resonant inclusions the case of anti-plane shear waves.

Journal of the Mechanics and Physics of Solids, 106:80 - 94.

|  | - | _ |
|--|---|---|
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |

#### Sokolowski, J. and Zochowski, A. (1999).

On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, 37(4):1251-1272.



#### Vondřejc, J., Rohan, E., and Heczko, J. (2017).

Shape optimization of phononic band gap structures using the homogenization approach.

International Journal of Solids and Structures, 113-114:147 - 168.



#### Wautier, A. and Guzina, B. B. (2015).

On the second-order homogenization of wave motion in periodic media and the sound of a chessboard.

Journal of the Mechanics and Physics of Solids, 78:382 - 414.

イロト イヨト イヨト

Minimizing horizontal and vertical and maximizing diagonal dispersions

- Cost functional:  $J_{4d} = \frac{1}{2} \left( \lambda(\gamma_1^2 + \gamma_3^2) + \frac{1}{\gamma_2^2} + \frac{1}{\gamma_4^2} \right), \quad \theta_{1,3} = 0,90^\circ, \quad \theta_{2,4} = \pm 45^\circ$
- Material ratios:  $\mu_2/\mu_1 = 6$  and  $\rho_2/\rho_1 = 1.5$
- Stopping criterion:  $\Theta < 10^{-3}$ . Reached for n = 9:  $\Theta_9 \approx 4.5 \times 10^{-8}$



イロト イヨト イヨト イ

## Minimizing horizontal and vertical and maximizing diagonal dispersions



November 12th, 2020 21 / 21

12

• • • • • • • • • • • •